حل تقریبی معادلات انتگرو-دیفرانسیل کسری به روش بسط تیلور

thesis
abstract

در این پایان نامه روش بسط تیلور برای حل تقریبی معادلات انتگرو ـ دیفرانسیل کسری خطی شامل نوع فردهلم و ولترا ارائه شده است. به وسیله ی بسط تیلور مرتبه ی m ام یک تابع نامعلوم در یک نقطه ی دلخواه، معادله ی انتگرو ـ دیفرانسیل کسری خطی به یک دستگاه معادلات برای تابع نامعلوم و مشتقات تا مرتبه ی m ام آن، تحت شرایط اولیه ، می تواند تبدیل گردد. این روش یک راه حل ساده برای بدست آوردن جواب معادلات انتگرو ـ دیفرانسیل کسری خطی ارائه می دهد. بعلاوه در این پایان نامه مثال هایی که تاثیر و دقت روش مفروض را تایید می کنند، ارائه می گردند.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

حل تقریبی معادلات انتگرال دیفرانسیل کسری با استفاده از روش بسط تیلور

در این پایان نامه، روش بسط تیلور برای حل تقریبی یک رده از معادلات انتگرال دیفرانسیل کسری خطی شامل انواع فردهلم و ولترا ارائه شده است. با استفاده از بسط تیلورمرتبه mام تابع مجهول در یک نقطه دلخواه، معادله انتگرال دیفرانسیل کسری خطی به طور تقریبی می تواند به یک دستگاه از معادلات برای تابع مجهول خودش و مشتقات مرتبه mام اش تحت شرایط اولیه تبدیل شود. این روش یک فرم حل ساده و بسته برای معادله انتگرال...

15 صفحه اول

حل معادلات دیفرانسیل کسری با روش تبدیل دیفرانسیل و حل معادلات انتگرو-دیفرانسیل کسری با استفاده از برخی موجک ها

چکیده بسیاری از مسائل مهم فیزیکی و مکانیکی به معادلات انتگرو-دیفرانسیل منجر می شوند، ولی در عمل تعداد کمی از این معادلات را می توان به روش تحلیلی حل کرد و جواب دقیق آن ها را بدست آورد. بنابراین از روش های عددی برای محاسبه جواب تقریبی آن ها استفاده می کنیم. در این پایان نامه از موجک های سینوس-کسینوس و ماتریس عملیاتی آن برای بدست آوردن جواب عددی معادلات انتگرو-دیفرانسیل غیرخطی از مرتبه کسری است...

15 صفحه اول

بهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری

تاکنون روش تجزیه آدومیان به­طور گسترده­ای برای حل انواع معادلات دیفرانسیل به­کار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روش­های دیگر ازجمله روش­های هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جواب­های تحلیلی-تقریبی از انواع معادلات دیفرانسیل می­باشد، در این مقاله سعی شده با به­کارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...

full text

تقریبی از جواب معادلات انتگرال- دیفرانسیل فردهلم غیرخطی با تأخیر زمانی با استفاده از روش تیلور

در این مقاله یک روش عددی مناسب برای حل معادلات انتگرال- دیفرانسیل فردهلم غیر خطی با تأخیر زمانی ارائه شده است. روش مبتنی بر بسط تیلور می باشد. این روش معادله انتگرال- دیفرانسیل و شرایط داده شده را به معادله ماتریسی که متناظر با یک دستگاه از معادلات جبری غیر خطی با ضرایب مجهول بسط تیلور می باشد تبدیل می کند، که از حل دستگاه، ضرایب بسط تیلور تابع جواب به دست می آید. سپس با مثال هایی کارایی روش را...

full text

حل عددی معادلات دیفرانسیل معمولی کسری با روش گالرکین ناپیوسته موضعی

در این مقاله، روش گالرکین ناپیوسته‌ی موضعی برای حل معادلات دیفرانسیل معمولی با مرتبه‌ی کسری را در حالت کلی به کار می‌بریم.  در این روش انتخاب (طبیعی) شار عددی آپویند، ما را قادر می‌سازد تا مسائل مقدار اولیه برای معادلات کسری معمولی را به صورت بازه به بازه و پیشرو در زمان حل کنیم. این بدین معنی است که ما بایستی در هر زیربازه به حل یک دستگاه معادلات از مرتبه پایین $(k+1)times (k+1)$...

full text

حل معادلات زاخاروف-کوزنتسوف کسری به کمک روش تبدیل دیفرانسیل کاهش یافته

در این مقاله یک جواب تحلیلی تقریبی از معادلات زاخاروف-کوزنتسف کسری به کمک روش تبدیل دیفرانسیل کاهش یافته تعیین خواهد شد. دیده می شود که جواب های به دست آمده به وسیله روش تبدیل دیفرانسیل کاهش یافته، مناسب بوده و این روش، روشی موثر برای حل معادلات با مشتقات جزئی کسری قویاً غیرخطی است.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه محقق اردبیلی - دانشکده علوم ریاضی

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023